Almost Everywhere Convergence of Riesz-Raikov Series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Everywhere Convergence of Series in L

We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.

متن کامل

Mean and Almost Everywhere Convergence of Fourier-neumann Series

Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...

متن کامل

The surprising almost everywhere convergence of Fourier-Neumann series

For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L requires very complicated research, harder than in the case of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L is the celebrated Carleson theorem, proved in 1966 (and extended to L by Hunt in 1967...

متن کامل

On Almost Everywhere Convergence of Bochner-riesz Means in Higher Dimensions

In Rn define (TXirf)~(£) = /(£)(! k_1í2l)+If n > 3, A > ¿(n-l)/(n+l)and2 and the associated maximal operators are r;/(x) = suP|(/-(i-Ki2)i)-|(x). r>0 It is conjectured that, when A > 0, T\ is bounded on Lp if and only if pó(A) < p < Po(A), where po(A)...

متن کامل

Almost Everywhere Convergence of Riesz Means Related to Schrödinger Operator with Constant Magnetic Fields

and Applied Analysis 3 Lemma 4. For λ > 0, one has 󵄩󵄩󵄩󵄩󵄩 K δ,l,j λ f (x) 󵄩󵄩󵄩󵄩󵄩 2 2 ≤ C2 −2M(j+l) δ 2M󵄩󵄩󵄩󵄩f 󵄩󵄩󵄩󵄩 2 2 , (19) where the constant C is independent of λ and δ. Proof. With the method similar to the proof of Lemma 4 in [9], we write h(t) = φ(t) − φ(2t) and expandm into a Taylor series around λt. Then, ?̂? δ,l,j λ (t) = ∫m δ (λ(t − 2 −(j+l) δ 2 r λ )) ĥ (r) dr = ∫m δ (λt − 2 −(j+l) δ 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1995

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-68-2-241-248