Almost Everywhere Convergence of Riesz-Raikov Series
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملMean and Almost Everywhere Convergence of Fourier-neumann Series
Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...
متن کاملThe surprising almost everywhere convergence of Fourier-Neumann series
For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L requires very complicated research, harder than in the case of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L is the celebrated Carleson theorem, proved in 1966 (and extended to L by Hunt in 1967...
متن کاملOn Almost Everywhere Convergence of Bochner-riesz Means in Higher Dimensions
In Rn define (TXirf)~(£) = /(£)(! k_1í2l)+If n > 3, A > ¿(n-l)/(n+l)and2 and the associated maximal operators are r;/(x) = suP|(/-(i-Ki2)i)-|(x). r>0 It is conjectured that, when A > 0, T\ is bounded on Lp if and only if pó(A) < p < Po(A), where po(A)...
متن کاملAlmost Everywhere Convergence of Riesz Means Related to Schrödinger Operator with Constant Magnetic Fields
and Applied Analysis 3 Lemma 4. For λ > 0, one has K δ,l,j λ f (x) 2 2 ≤ C2 −2M(j+l) δ 2Mf 2 2 , (19) where the constant C is independent of λ and δ. Proof. With the method similar to the proof of Lemma 4 in [9], we write h(t) = φ(t) − φ(2t) and expandm into a Taylor series around λt. Then, ?̂? δ,l,j λ (t) = ∫m δ (λ(t − 2 −(j+l) δ 2 r λ )) ĥ (r) dr = ∫m δ (λt − 2 −(j+l) δ 2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1995
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-68-2-241-248